Nitrate Treatability Study (NTS)

By: Zach Raymond-Becker

Problem Statement

Source: Google Images – Hallmark Farmhouse

Find a solution to rural nitrate contamination in ground water for drinking in domestic households.

NTS Project

- Modeled raw ground water:
 - $\odot\,$ Ground water concentration is 20 mg/L NO_3-N and 40 mg/L SO_4 $\,$
- Goal:
 - Treat modeled ground water at the flow rate of 0.2 gallons per minute to below safe levels as suggested by the Safe Drinking Water Act
 - \circ Max Contaminant Level of 10 mg/L NO₃-N
- Success of design:
 - o 80% removal of nitrate
 - Service period of 1 month
 - Low Maintenance
 - Low Cost

Presentation Outline

- Part 1 background and technology selection
- Part 2 laboratory protocol and experiments
- Part 3 scale up calculations
- Part 4 system configuration recommendations

Background

Target group:

- Domestic single family properties with well drinking water delivery systems in agriculturally rich areas
- 20% of shallow aquifer wells violate the Safe Drinking Water Act's Max Contaminant Level for nitrate
- Effected population:
 - Infants
 - Elderly
 - People with weakened immune systems
- Risks due to nitrate:
 - Methaemoglobinemia or Blue Baby Syndrome
 - Shortness of breath

Technology Selection

- Nitrate removal technologies:
 - Ion exchange (adsorption)
 - Reverse osmosis (membrane filtration)
 - Electrodialysis (membrane filtration)
 - Biological denitrification
 - Chemical deniftrication
- Selected Technology

○ Strong Base Ion Exchange Resin

Nitrate Selective Resin

- Purolite[®] A520E
- Exchange capacity:
 0.9 meq/mL minimum
- Functional group:
 Quaternary Ammonium
- Resin size range:
 300 um to 1200 um
- Max operating temperature:
 0 212° F
- Operating pH range:
 0 4.5 to 8.5

Synthetic Water for Experiments

- Lake Mary ground water
- Spiked with:
 Na-NO₃ and Na₂-SO₄
- Final Concentration:
 0 26 mg/L NO₃-N and 40 mg/L SO₄

Synthetic Water Analysis

Table 1: Synthetic Water for Experiments 1 and 2							
Anions	mg/L	ppm as CaCO ₃	meq/L	Cations	mg/L	ppm as CaCO ₃	meq/L
Nitrate	114.92	93.0852	5.746	Calcium	53		2.65
Sulphate	40		0.833	Magnesium	35		2.916667
Chloride	4		0.113	Sodium	146		6.347826
Bicarbonate	320		5.245902	Potassium	0.2		0.005128
Total Anions			11.938	Total Cations			11.920
TDS=	300	mg/L		LSI=	-0.14		
T=	11.8	С		TH=	320		
P=	0.777	atm		pH=	7		

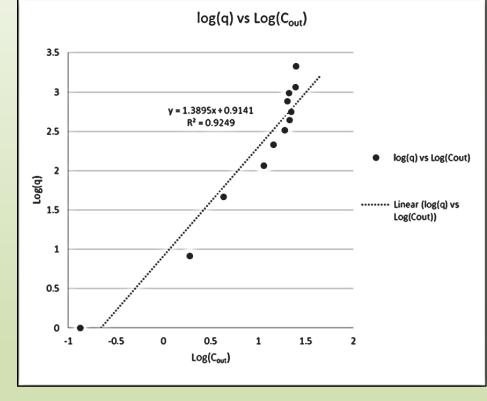
Laboratory Experiments

- Flow Through Experiment
 - 3 cycles and 33 samples per cycle
 - o **10 mL A520E**
 - Evaluate Recharge Ability
 - Freundlich Model
- Batch Experiment
 - $\,\circ\,$ Batch's 2A and 2B
 - Varied resin mass
 - Freundlich Model

Flow Through Experiment Results

• Parameters:

$$\circ \frac{1}{n} = 1.39$$
$$\circ K_f = 8.2$$


• Results:

$$o q = K_f * C_{out}^{(\frac{1}{n})}$$

$$o q = 21.5 ug$$

$$NO_3 - N per$$

$$mg Resin$$

 $Log(q) = log K_f + (1/n) log(C_{out})$

Batch Experiment Results

- Experiment 2A
 - Source of Errors:
 - Old HACH reagents
 - Biological Activity
 - Scratched Cuvettes
- Experiment 2B

Samples await analysisNeed new reagents

Scale Up with Freundlich Parameters

• Scale up Conditions:

$$C_{in} = 20 \frac{mg}{L} NO_3 - N + 40 \frac{mg}{L} SO_4$$

$$C_{out} = 2 \frac{mg}{L} NO_3 - N + 40 \frac{mg}{L} SO_4$$

$$Q = 8640 \ gallons/month$$

$$Olive{ Design factor = 0.85 }$$

• Result:

 \circ Volume_{resin} = 3.54 ft³ resin

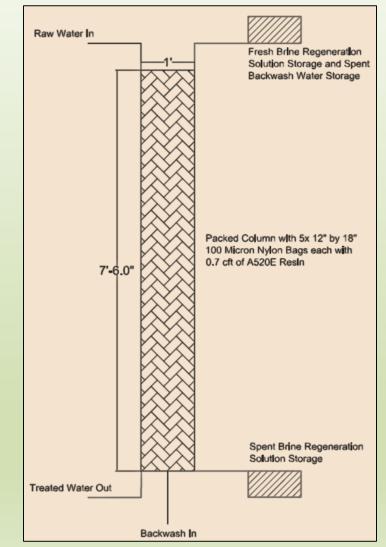
Scale Up using A520E Documentation

• Scale up Conditions:

$$C_{in} = 20 \frac{mg}{L} NO_3 - N + 40 \frac{mg}{L} SO_4$$

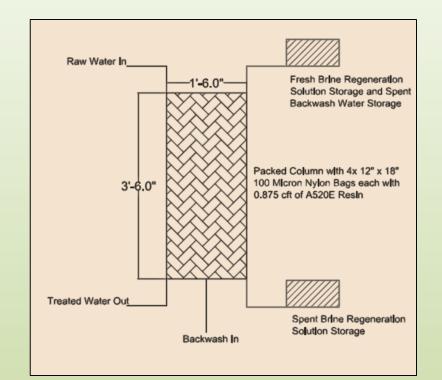
$$C_{out} = 3.6 \frac{mg}{L} NO_3 - N + 40 \frac{mg}{L} SO_4$$

$$Q = 8640 \ gallons/month$$


$$Design \ factor = 0.85$$

• Result:

 \circ Volume_{resin} = 3.50 ft³ resin


Recommended System Configuration A

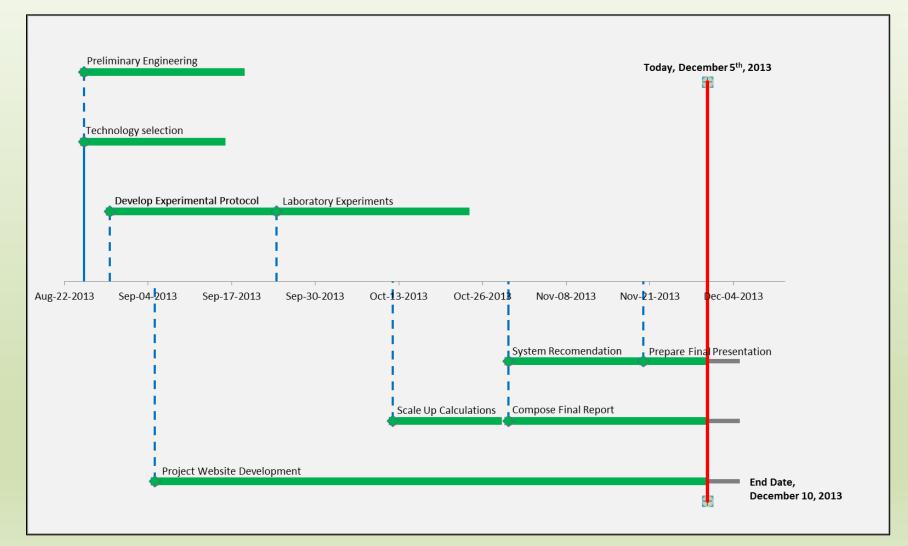
- Service Pressure drop:
 5.79 to 13.4 PSI
- Backwash flow rate:
 0 2.2 gpm
- Regeneration volume:
 0 105 gallons
- Brine concentration:
 0 8 lb/ft³
- Temp range:
 0 41°F to 120° F

Recommended System Configuration B

- Service Pressure drop:
 0 1.37 to 3.96 PSI
- Backwash flow rate:
 5 gpm
- Regeneration volume:
 0 105 gallons
- Brine concentration:
 0 8 lb/ft³
- Temp range:
 0 41°F to 120° F

Operating Conditions

Operating Conditions for Recommendations							
Options A and B							
Operation	Rate	Solution	Time	Amount			
Service	0.2 gpm	Influent Water for treatment	30 days	8640 gallons			
Backwash	2.2-5 gpm	Influent Water	7-16 minutes	35 gallons			
Regneration	1.75 gpm	8lb/ft ³ NaCl	70 minutes	120 gallons			
Rinse	4.5 gpm	Influent Water	16 minutes	55 gallons			
Design Backwash expansion is 50% to 75% depending on temperature							
128.5 lb NaCl red	quired per 30 d						
Regeneration ta	kes 110 minut						


Economic Analysis

- Initial Cost:
 - \$2,499.00 ± \$200.00 for materials and installation
- Cost Ongoing:
 - \$164.00/year for sodium chloride (NaCl)
 \$600.00/year in regeneration man hours
- Technician rate:
 - o \$25.00/hr

Distribution of Hours

Table 2: Distribution of He					
Task	Estimated Hours	Actual Hours	Percent of Total	l Cost	
Preliminary Engineering	50	30	11%	\$ 1,350.00	
Technology Selection	35	30	11%	\$ 1,350.00	
Experimental Protocol	25	20	8%	\$ 900.00	
Project Website	14	20	8%	\$ 900.00	
Laboratory Experiments	50	50	19%	\$ 2,250.00	
Scale up Calculations	50	40	15%	\$ 1,800.00	
System Recommendation	57	25	9%	\$ 1,125.00	
Final Report	35	30	11%	\$ 1,350.00	
Final Presentation	10	20	8%	\$ 900.00	
Totals	326	265	81%	\$ 11,925.00	

Project Organization

Conclusion

- Project Objectives:
 - 80% removal of nitrate
 - Service period of 1 month
 - Low Maintenance
 - Low Cost

Questions?

